
From workflow models to executable Web service interfaces

Armin Haller, Mateusz Marmolowski
Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway
firstname.lastname@deri.org

Walid Gaaloul
TELECOM & Management SudParis (ex INT)

UMR SAMOVAR
walid.gaaloul@it-sudparis.eu

Eyal Oren
AI Department

Vrije Universiteit Amsterdam
eyal@cs.vu.nl

Brahmananda Sapkota, Manfred Hauswirth
Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway
firstname.lastname@deri.org

Abstract

Workflow models have been used and refined for years
to execute processes within organisations. To deal with col-
laborative processes (choreographies) these internal work-
flow models have to be aligned with the external behaviour
advertised through Web service interfaces. However, tra-
ditional workflow management systems (WfMS) do not of-
fer this functionality. Simply sharing and merging process
models is often not possible, because workflow management
lacks a widely accepted standard theory for workflow mod-
els. Multiple research and standardisation efforts to inte-
grate different workflow theories have been proposed over
the years. XPDL is the most widely used standard for pro-
cess model interchange and supported by over 80 systems.
However, XPDL also lacks the possibility to relate a work-
flow model to its possible choreography interface abstrac-
tions. To remedy this situation, we propose to abstract the
XPDL model to a higher-level model, perform the integra-
tion and the compaction algorithms at that level and then
ground it back to the desired choreography models. We
develop and use an integrated ontology which is based on
the XPDL standard for this purpose. To facilitate the ab-
straction and grounding, we present a mapping procedure
to automatically translate XPDL and BPMN workflow mod-
els into this ontology. After translation, these models are
annotated with a parameterised role model and other col-
laborative properties. We present a compaction procedure
that automatically maps the annotated models into external
choreography interfaces that expose only the relevant in-
formation for a particular partner collaboration. Our pro-
cedure is agnostic with respect to the target choreography
model. We demonstrate our approach using WSMO chore-
ographies which enables us to automatically generate inter-
face models from any WfMSs that supports XPDL export.

1 Introduction
Internet technologies enable organisations to connect

their supply chains more tightly to form virtual enter-
prises [16] where resources are shared to improve the ef-
ficiency of their cooperation. Service-Oriented Comput-
ing [15] promises to facilitate the sharing of resources by a
network of cooperating services, loosely coupled into flexi-
ble business processes that span multiple organisations. The
composition of services ensures the correct cooperation be-
tween business partners according to a pre-defined busi-
ness logic. This business logic is described in choreogra-
phy models, stating conversational patterns with which the
services can be accessed. A choreography interface, also
known as “interface behaviour” [7], is a subset of a choreog-
raphy model that describes the behaviour of one participant
in a collaboration. Conceptually, a choreography interface
of one partner can be regarded as an abstracted view on a
workflow model [5, 18, 7, 4]. However, traditional work-
flow management systems (WfMS), Web service composi-
tions languages such as BPEL [1] and choreography models
such as WS-CDL [13] lack a connection between the work-
flow model and the choreography model. This disconnec-
tion leads to two problems:

• choreography interfaces need to be created and syn-
chronised with the workflow model manually, and

• the consistency of choreography interfaces to the
workflow model is not guaranteed.

An obstacle in connecting workflow models with chore-
ography models is the variety of existing workflow lan-
guages, workflow metamodels, and choreography lan-
guages. Multiple research and standardisation efforts to in-
tegrate different workflow theories and models have been
proposed over the years. The XML Process Definition Lan-



guage (XPDL) is the most widely used standard for pro-
cess model interchange and supported by over 80 systems,
among them the market leaders in WfMSs. XPDL, since
version 2.0, also serves as serialisation of BPMN1 mod-
els, a standard graphical representation for workflow mod-
els. However, XPDL also lacks the possibility to relate the
workflow model to its possible choreography interface ab-
stractions. Due to its weak data model it is further chal-
lenging to integrate different business documents whose ex-
change among workflows represents the foundation of any
collaborative process. To address this challenge we extend
the multi-meta model process ontology (m3po) introduced
in [10] with concepts for a full formalisation of the meta-
model of XPDL. The m3po ontology presented in this paper
explicitly models the complete semantics of XPDL. The in-
tegrated m3po ontology is used as shared representation to
perform the integration and the compaction algorithms at
that level and then ground it back to the desired choreogra-
phy models. The advantage of this approach besides others
is that we can use a Web ontology language for the formal-
isation of our model to link data with established business
document standards.

WfMS

XPDL

XPDL export
1

Domain Ontologies

P
ri

va
te

 
V

ie
w

C
ho

re
og

ra
ph

y 
E

xt
en

si
on

s
(P

ub
lic

 V
ie

w
)

Mapping

2

m3po

Business Reference 
Ontologies

Reference

Reference

Annotations

3

Compaction4

C
ho

re
og

ra
ph

y 
In

te
rf

ac
e 

m
od

el

W
SM

O
 

C
ho

re
og

ra
ph

y 
m

od
elMapping

5

Figure 1: Overview: from workflow to choreography

Our approach starts from the XPDL output of a work-
flow management system (step 1 in Fig. 1). Our system
implements mapping rules for the complete XPDL stan-
dard. The translation from an XPDL document (step 2)
results in ontological instances according to the m3po meta-
model. These instances are annotated by a business ex-
pert with collaboration-specific information (step 3), using
an ontology editor such as WSMO Studio2. These anno-
tations are the only required manual input to our mapping
process, but they are lightweight and mainly define the vis-
ibility of workflow tasks to a specific partner in the col-
laboration. Based on the annotated workflow model our
compaction rules (step 4) extract a choreography interface
model for a specific partner. The resulting abstraction can
be mapped (step 5) to an executable choreography interface
model. Each step is described in the subsequent sections.

1See http://www.bpmn.org/
2See http://www.wsmostudio.org/

1.1 Motivating Example
In our example, we assume that the collaborating part-

ners agree on using a standard choreography such as the
one defined by RosettaNet. RosettaNet3 defines inter-
organisational processes within Partner Interface Processes
(PIPs). RosettaNet PIPs are mainly used by companies in
the ICT domain to control their external collaborations. Our
motivating example describes an internal process (work-
flow) of a Supplier, and the desired public collaboration
in a “Request for Quote” (RFQ) process with two partners,
a Customer and a Transaction Bank. The public process
with the Customer follows the standard process PIP3A1 de-
fined by RosettaNet. Fig. 2 depicts a BPMN diagram of
the global conversation (choreography) between the Sup-
plier and the Customer. Private activities in the workflow
of the Supplier are depicted as black boxes, whereas white
activity boxes represent public activities in the collaboration
with the Customer and grey activities with the Transaction
Bank. The Supplier’s provided interface to a Customer is
formed by the white activities in its pool. Similarly, the
complementary Customer’s requested interface is provided
by the white activities in its pool.

Transaction 
Bank

SupplierCustomer

Process RFQRFQRequest for 
Quote (RFQ)

Check 
Product 

Availability
Custo
mer ID

Manage 
Account

DUNS

Check Credit 
Rating

Credit 
Rating

Prepare 
Quote 

Rejection

Process 
Quote

Reject

Prepare 
Quote 

Acceptance

Accou
nt ID

Quote

Prepare RFQ
Signal

Process 
Signal

Signal

Figure 2: RFQ process including external communication

Fig. 2 shows only the behavioural aspect and parts of
the informational aspect. Organisational and operational as-
pects of the model such as the role assignment of the “Check
Product Availability” activity are not shown for the sake of
clarity of the model. However, parts of the organisational
aspect can be seen in Fig. 3 (cf. role assignments such as
the “Stockist” in the “Check Product Availability” activity).

We assume that the Supplier implements and executes
his internal workflow in a traditional WfMS. We have cho-
sen Fujitsu iFlow (now Fujitsu Interstage Suite) as an exam-
ple WfMS. The rationale for this choice is that Fujitsu iFlow

3See http://www.rosettanet.org/

http://www.bpmn.org/
http://www.wsmostudio.org/
http://www.rosettanet.org/


<?xml version=”1.0”?>
<Package xmlns:xpdl=”http://www.wfmc.org/2002/XPDL1.0” xmlns:xsi=”

http://www.w3.org/2001/XMLSchema−instance” Id=”1551”
Name=”RFQ process”>

<PackageHeader>
<XPDLVersion>1.0</XPDLVersion>
<Vendor>Fujitsu Software Corporation</Vendor>
<Created>Thu Dec 04 17:16:30 GMT 2008</Created>

</PackageHeader>
<WorkflowProcesses>

<WorkflowProcess Id=”1551” Name=”Thesis example process”
AccessLevel=”PUBLIC”>

...
<Participants>

<Participant Id=”Material Management” Name=”Material
Management”>

<ParticipantType Type=”ROLE”/>
</Participant>
<Participant Id=”Financial Accounting” Name=”Financial

Accounting”>
<ParticipantType Type=”ROLE”/>

</Participant>
<Participant Id=”Stockist” Name=”Stockist”>

<ParticipantType Type=”ROLE”/>
</Participant>

</Participants>
<Activities>
...

<Activity Id=”1558” Name=”Process RFQ”>
<Performer>Material Management</Performer>
<StartMode><Automatic/></StartMode>
<FinishMode><Automatic/></FinishMode>
<TransitionRestrictions>

<TransitionRestriction>
<Join Type=”XOR”/>
<Split Type=”XOR”>

<TransitionRefs>
<TransitionRef Id=”1563”/>

</TransitionRefs>
</Split>

</TransitionRestriction>
</TransitionRestrictions>
...

</Activity>
...

</WorkflowProcess>
</WorkflowProcesses>

</Package>

instance PackageType1551 memberOf PackageType
hasName hasValue string(”RFQ process”)
hasPackageHeader hasValue PackageHeader 1
hasProcessType hasValue ProcessType1551

instance PackageHeader 1 memberOf PackageHeader
hasXPDLVersion hasValue string(”1.0”)
hasVendor hasValue string(”Fujitsu Software Corporation”)
hasCreated hasValue string(”Thu Dec 04 17:16:30 GMT 2008”)

instance ProcessType1551 memberOf ProcessType
hasName hasValue string(”Thesis example process”)
hasAccessLevel hasValue PUBLIC
hasParticipant hasValue MaterialManagement
hasParticipant hasValue FinancialAccounting
hasParticipant hasValue Stockist
hasActivity hasValue Activity1558
hasTransition hasValue Transition1563

instance MaterialManagement memberOf Participant
hasName hasValue string(”Material Management”)
hasParticipantType hasValue ParticipantType 2

instance Financial Accounting memberOf Participant
hasName hasValue string(”Financial Accounting”)
hasParticipantType hasValue ParticipantType 2

instance Stockist memberOf Participant
hasName hasValue string(”Stockist”)
hasParticipantType hasValue ParticipantType 2

instance Activity1558 memberOf Activity
hasName hasValue string(”Process RFQ”)
hasPerformer hasValue MaterialManagement
hasTransitionRestriction hasValue TransitionRestriction 2

instance TransitionRestriction 2 memberOf TransitionRestriction
hasJoin hasValue Join 1
hasSplit hasValue Split 2

instance Transition1563 memberOf Transition
hasFrom hasValue Activity1558
hasTo hasValue Activity1557

instance Join 1 memberOf Join
hasType hasValue string(”XOR”)

instance Split 2 memberOf Split
hasType hasValue string(”XOR”)

Figure 3: RFQ process in Fujitsu iFlow, the corresponding XPDL output (step 1) and the translated m3po instance (step 2)

uses a proprietary workflow model but offers XPDL im-
port/export facilities. Since many other WfMS use propri-
etary models as well [22] and about 80 in total offer XPDL
export, our choice is representative for traditional WfMSs.
Fig. 3 shows the workflow modelled in Fujitsu iFlow. Snip-
pets of the XPDL exported by Fujitsu iFlow are shown in
the middle part of Fig. 3.

Although the Supplier executes the internal workflow
model in a WfMS, the communication with a Customer
is not managed as such. The automation of the collabo-
ration could minimise the manual labour involved by en-
forcing partners to directly invoke interfaces to its internal
WfMS. All data input from collaboration partners should
be through electronic data exchange. One example for such
an input is the initial “Request for Quote” message. To en-
able automatic collaboration the Supplier needs to describe
the public view on its workflow, possibly adapt it, define
the mapping to a collaborative process model and eventu-
ally execute the message exchange patterns in the chore-
ography interface. Considering the fragmented market of
WfMSs and the lack of a standardised process model, it
is likely that different Customers and also the Transaction
Bank will use different WfMSs with different metamod-
els and languages. Lacking a uniform metamodel, defining

and executing collaborative choreographies across different
WfMSs is not feasible. We therefore propose an integrated
ontology of both internal workflow and choreography as-
pects that is able to represent multiple metamodels and links
data with established business document standards. Using
our mapping rules, the example workflow model is trans-
lated into our integrated ontology; the result is shown on
the right side of Fig. 3.

2 Related Work
Chiu et al. [5] present a metamodel and prototype work-

flow system that includes cross-organisational communica-
tion properties. Schulz & Orlowska [18] build upon the idea
of workflow views and introduce a state-transition approach
that binds states of private workflow tasks to a correspond-
ing view-task in a Petri-net. In contrast to the work of Chiu
et al. [5], they identify mappings between the workflow
and the choreography model in the conceptual architecture.
However, both approaches are restricted to their own work-
flow language, do not integrate different workflow models,
and ignore the data aspect.

Martens [14] verifies the consistency between executable
and abstract BPEL. The verification is based on an ab-



stracted communication graph (choreography interface) us-
ing Petri-nets. The approach focuses on determining the
behaviour equivalence of abstract processes, rather than ex-
tracting choreographies. Bobrik et al. [2] create person-
alised process views based on parameterised operations, but
only the behavioural aspect is considered and the result is
meant for visualisation only.

Chebbi et al. [4] extract choreography models from
workflows by defining the partial visibility of workflow ac-
tivities and their resources. They present rules how to come
from an internal workflow to a cooperative one in two steps.
Their approach is based on Petri-nets and their contrac-
tion rules are meant to generate a collaborative choreogra-
phy model. In contrast, our privacy annotations are simi-
lar, but we then compact to a choreography interface model
first, followed by the generation of many different execution
models (for each partner). Eshuis & Dehnert [8] do con-
struct one parameterised view per consumer and also con-
sider consistency criteria between the public process and
internal one. Still, both approaches are limited to the be-
havioural aspect without catering for e.g. data compatibil-
ity.

Tran et al. [21] also build on workflow views, and
propose an automated integration of models at different
abstraction levels. They present an extensible reverse-
engineering tool-chain to automatically populate various
view models from existing BPEL process descriptions and
then generate executable code from these views. Their ap-
proach is closest to ours, with the difference that we start
from an interchange model, allowing us to integrate also
non-BPEL models and to generate an executable choreog-
raphy model in the final step.

Roman et al. [17] propose a methodology for generat-
ing a WSMO choreography model from graph-based speci-
fications. Based on the WSMO choreography model they
propose a faithful extension that is based on Concurrent
Transaction Logic (CTR). The work is similar to ours in re-
gard to the translation from a graph-based model to WSMO
choreographies and is complimentary in regard to the CTR-
extensions to the WSMO model. However, they only pro-
pose a translation from graph-based models, but do not
cover the choreography extraction issue from workflow
models.

3 Translating XPDL to m3po
The m3po ontology is not meant for direct modelling,

but as an interchange format where instances are automati-
cally generated by the conversion of XPDL documents. The
actual conversion in our tool4 involves two steps. First, the
m3po ontology, described in the next section, is loaded. The
ontology definition acts as the language grammar, including

4See http://www.m3pe.org/oXPDL/

the concept hierarchy, its attributes and their cardinalities.
Then, the actual XPDL document is analysed and translated
into a corresponding m3po document

The detailed process is depicted in the UML Activity Di-
agram in Fig. 4. First, the XML file is parsed and for each
node (both text and element) we check whether the corre-
sponding concept or attribute is defined in m3po or should
be ignored. For this lookup, the names of element nodes
are mapped using a special dictionary that maps synonyms
defined by the WfMC to concepts in m3po.

After the name mapping the converter checks whether a
concept is actually defined in m3po or not. If it is, the pro-
cess continues with the instance name construction. There
are two cases that may occur. Either the ID is explic-
itly defined in the XML document or the tool generates a
unique identifier by a combination of the element name and
a hash of the creation date. When a new instance is created
all attributes within the concept are parsed, their types are
checked and if required they are added to the ontology.

Concept name 
mapping

Text 
node?

Construct 
instance name

Take the next 
child

Add as attribute 
to current 
instance

Take the next 
sibling

Simple type 
conversion

Reference 
attribute to 

parent instance

Con-
cept in 
m3po?

Attribute
a concept 

type?

Any 
attributes 

left?

Any
child con-

cepts?

Any 
sibling 
con-

cepts?

NO

YES

YES

YES

Take next 
attributeYESNO

NO

YESYES

NO

NO

NO

Output m3po
instance

Read XPDL 
instance

Read m3po 
core ontology

Figure 4: Processing steps of the conversion algorithm

The result of the conversion process is an instantiated
m3po ontology that represents the knowledge encoded in
the XPDL document. We have verified the correctness of
the translation tool with respect to the XPDL metamodel.
Note that the translation procedure is not hard-coded into
the converter tool, but based on declarative mapping rules.
This declarative approach makes the converter flexible with
respect to changes in either XPDL or m3po since new rules
can be added to encompass those changes.

4 Modelling BPMN and XPDL in m3po
In this section we briefly present the concepts in m3po

concerned with the modelling of the XPDL and BPMN
metamodel. We classify the workflow topics covered in the
ontology into a functional, behavioural, informational, or-

http://www.m3pe.org/oXPDL/


ganisational, and operational aspect [12]. We describe the
concepts related to each aspect and illustrate each section
with a UML class diagram that presents the main concepts
and attributes in m3po. Please note that, for brevity, each as-
pect is presented in a separate UML diagram, not showing
the relations between concepts in different aspects5.

The core m3po ontology [10] covers all of
XPDL/BPMN. The ontology is modelled in WSML
[6] and consists of 130 concepts and 50 logical axioms.
The translation from XPDL to m3po is fully automatic, as
described in the previous section. In each section, we also
present choreography-specific extensions to the core m3po
ontology. Since these extensions model information that is
not present in the workflow model, they need to be added
manually by a domain expert.

4.1 Functional Aspect
The functional aspect in a workflow model can be seen

as a meta-concept defining the reusability characteristics of
the modelling elements in the underlying aspects. In XPDL
as well as in m3po the Package element type serves as the
top-level concept in a process model, referencing on the one
hand aspect specific properties and on the other hand com-
prises of concepts to describe generic workflow properties.
Some properties introduced in version 2.0 of XPDL [20] to
represent BPMN diagrams (including the graphical layout)
have weak semantics. For example, the Pool, the Partic-
ipant and the Lane elements are only of type string. In
m3po the range of these properties are Participants, Pro-
cessTypes, and ParentLanes respectively. The translation al-
gorithm presented in the next section performs a type check
when creating Pool instances by trying to match the string
in the pool element with translated objects of type Partici-
pant or ProcessType. If no matches are found, the type of
the pool element remains a string type, but a stronger typing
can be added manually.

Choreography extensions We distinguish Private-,
Abstract- and PublicProcessTypes in m3po. A PrivatePro-
cessType describes activities that constitute the internal
workflow. The translation of an XPDL model yields by
definition to a PrivateProcessType. AbstractProcessTypes
are used to model interface models, such as the chore-
ography interface descriptions we extract by compacting
an annotated PrivateProcessType as described in section
5. PublicProcessTypes are used to model collaborative
processes, i.e. a composition of AbstractProcessTypes.

4.2 Control Aspect
The control aspect is concerned with the task ordering

in a process model and the routing along those tasks. In

5The complete diagram can be found at: http://www.m3pe.org/.

XDPL as well as in the proposed ontologisation in m3po,
the Process type constitutes the primary modelling element.
It groups related activities, data, and resources together. The
Activity class in m3po represent the reusable task behaviour
in a process and may take one of the following types, a
task, a route activity (a gateway in BPMN) that constrains
the ordering of activities, a subflow (a reusable SubProcess
in BPMN), a block activity (an embedded SubProcess in
BPMN) or an event (cf. Fig. 5).

StartEvent

Status

EndEvent

PrivatePublic

Activity

-hasId:Identifier

-hasName:string[0..1]

-hasDescription:string[0..1]

-hasLimit:string[0..1]

-hasPriority:string[0..1]

-hasDeadline:Deadline[*]

-hasSimulationInformation:[0..1]

-hasIcon:Icon[0..1]

-hasDocumentation:string[0..1]

-hasInputSet:InputSet[*]

-hasOutputSet:[*]

-hasIORules:IORules[*]

-hasAssignment:Assignment[*]

-hasObject:Object[0..1]

-hasNodeGraphicsInfo:NodeGraphicsInfo[*]

-hasExtension:iri[*]

-isStartActivity:boolean[0..1]

-hasStartMode:string[0..1]

-hasFinishMode:string[0..1]

-hasStartQuantity:int[0..1]

-hasCompletionQuantity:int[0..1]

-isATransaction:boolean[0..1]

-isForCompensation:boolean[0..1]

-hasExtendedAttribute:ExtendedAttribute[*]

-hasTransaction:Transaction[0..1]

TransitionRestriction

Transition

-hasId:Identifier

-hasName:string[0..1]

-hasCondition:Condition[0..1]

-hasDescription:string[0..1]

-hasExtendedAttribute:ExtendedAttribute

-hasAssignment:Assignment

-hasObject:Object[0..1]

-hasConnectorGraphicsInfo:ConnectorGraphicsInfo[*]

Split Join

LoopStandardLoopMultiInstance

-hasMI_Condition:ExpressionType[0..1]

-hasMI_Ordering:string

-hasMI_FlowCondition:string[0..1]

-hasComplexMI_FlowCondition:ExpressionType[0..1]

Loop

-hasLoopType:string

-hasLoopCounter:int

IntermediateEvent

Event

ActivitySet

-hasID:Identifier

-hasName:string[*]

-hasObject:Object[*]

-hasAdHoc:boolean

-hasAdHocOrdering:string

-hasAdHocCompletionCondition:string[*]

Abstract

ActivityOccurrence

BlockActivity

-hasView:string[0..1]

ProcessOccurrence

-hasName:string

-hasPerformanceTime:duration[0..1]

-hasIdleTime:duration[0..1]

ProcessType

-hasId:Identifier

-hasName:string[0..1]

-hasProcessHeader:ProcessHeader

-hasRedefinableHeader:RedefinableHeader[0..1]

-hasFormalParameter:FormalParameter[*]

-hasAssignment:Assignment[*]

-hasObject:Object[0..1]

-hasExtension:[*]

-hasSuppressJoinFailure:boolean[0..1]

-hasEnableInstanceCompensation:boolean[0..1]

-hasAdHocOrdering:string[0..1]

-hasAdHocCompletionCondition:string[0..1]

-hasPlannedIdleTime:duration[0..1]

-hasPlannedPerformaceTime:duration[0..1]

-hasExtendedAttribute:ExtendedAttribute[0..1]

-hasAdhoc:boolean[0..1]

0..1 hasProcessType

hasActivitySetId

0..1

*hasActivitySet

0..1hasDefaultStartActivitySetId

0..1
* hasTransition

0..1

*

hasTransition

hasTransitionRef

0..1 hasEvent

hasDefaultStartActivityId

0..1 hasDefaultStartActivityId 

0..1
*hasTransitionRestriction

hasFrom

hasTo

0..1

0..1hasLoop

0..1 *

hasActivity

*

0..1 hasActivity

0..1

hasBlockActivity

0..1hasStartActivityId

0..1

hasProcessType

0..1hasProcessType

hasStatus 0..1

hasStatus

hasStatus

Figure 5: Concepts in the control aspect

The actual control flow in XPDL and m3po is mod-
elled via explicit transitions between elements, including
the routing activities modelling control flow constructs such
as a Loop and a Split. This modelling paradigm is compat-
ible with the behavioural definitions in BPMN, which as
a graph based modelling notation relies on the modelling
of connectors to define the control flow. Accordingly, the
definition of control flow links in m3po is modelled with
a Transition concept (cf. Fig. 5), representing arcs as a
first class entity in the model, with associated hasFrom and
hasTo properties.

Choreography extensions The annotations required in
choreography models in regard to the control aspect are
concerned with the parameterised views on activities. Pro-
cess activities in m3po can be defined to be visible only to a
specific partner by the provision of the isVisibleTo attribute.
This relation is used in the compaction rules to create a
choreography interface for a specific partner (cf. section
5). When the visibility relation is added to a model the re-
spective activity is by definition member of an AbstractPro-
cessType.

http://www.m3pe.org/


4.3 Informational Aspect

The informational aspect deals with data production and
data consumption, i.e. the data flow between tasks. We pro-
vide a direct mapping from all data types to the ontology.
Simple datatypes are directly modelled as WSML datatypes
which inherit the type hierarchy from XSD Schema. Com-
plex datatypes are modelled similarly to XPDL.

XPDL and m3po offer means to model all common ways
of data passing, either along the control flow, by defining an
explicit data flow with data connectors or as standard by the
global access to variables. The passing of data along the
control flow can be achieved via DataMapping objects that
are referenced from Activities and which define the direc-
tion of the data with a hasFromParameter and hasToParam-
eter attribute. A DataMapping class can also include a logi-
cal expression to define a mapping condition. A more com-
mon way to pass data is the modelling of message flows.
For the modelling of internal message passing a message
flow can be defined on the activity level, connecting a Mes-
sageType with a hasFrom and hasTo attribute to an Activity.
To model collaborative Web service based processes XPDL
and m3po offer message passing on the PackageType level
between Pool types. However, whereas messages in XPDL

UnionType

-hasMember:

TypeDeclaration

-hasId:Identifier

-hasName:string[0..1]

-hasDescription:string[0..1]

-hasExtendedAttribute:ExtendedAttribute[0..1]

SchemaType RecordType

-hasMember:Member[*]

MessageType

-hasId:Identifier

-hasName:string[0..1]

-hasActualParameter:ExpressionType[0..1]

-hasFaultName:int[0..1]

-hasMessageHeader:MessageHeader[0..1]

-hasMessageBody:MessageBody[0..1]

MessageFlow

-hasId:Identifier

-hasName:string[0..1]

-hasObject:Object[0..1]

-hasConnectorGraphicsInfo:ConnectorGraphicsInfo[0..1]

ListType

FormalParameter

-hasId:Identifier

-hasName:string[0..1]

-hasDescription:string[0..1]

-hasLength:string[0..1]

-hasMode:string

-hasInitialValue:ExpressionType[0..1]

-isReadOnly:boolean[0..1]

-isRequired:boolean[0..1]

-isArray:boolean[0..1]

EnumerationType

-hasEnumerationValue:string[*]

DeclaredType

-hasId:Identifier

-hasName:string[0..1]DataType

-hasType:DataType[0..1]

-hasDataValue:string[*]

DataMapping

-hasFormal:string

-hasActual:ExpressionType

-hasDirection:string

DataField

-hasId:Identifier

-hasName:string[0..1]

-hasInitialValue:ExpressionType[0..1]

-hasLength:string[0..1]

-hasDescription:string[0..1]

-isArray:boolean[0..1]

-isCorrelation:boolean[0..1]

-isReadOnly:boolean[0..1]

BasicType

-hasType:string

-hasLength:string[0..1]

-hasPrecision:int[0..1]

-hasScale:int[0..1]

ArrayType

-hasLowerIndex:string

-hasUpperIndex:string

hasDataType

hasDataType

*

hasFromParameter

hasToParameter

0..1
*
hasDataMapping

0..1

hasMessageType

1..*

hasDataType

Figure 6: Concepts in the informational aspect

are only referenced by an external identifier, in m3po such
identifiers can also refer to external message ontologies.
Since the messages in our motivating example are defined
by RosettaNet PIP schemas, we can reuse an existing Roset-
taNet ontology to indicate the exchanged messages in each
activity.

Choreography extensions Data transfer in collaborative
processes is achieved by defining the sequence and the con-
ditions in which messages are exchanged. The modelling
of messages as described above is already offered by XPDL
for workflow modelling. The only difference for collab-
orative processes is that messages additionally need to be
referenced from collaborationRoles.

4.4 Organisational Aspect

The organisational aspect defines who is responsible for
performing a task in a workflow and gives the modeler
means to assign constraints on the agent responsible for car-
rying out a task. The organisational aspect in XPDL is only
weakly defined; a process participant is simply a token of
the following types: resource set, resource, organisational
unit, role, human, or system. In m3po these types are mod-
elled as stand-alone concepts based on representations in
the Suggested Upper Merged Ontology (SUMO)6, a richly
axiomatised formal ontology. However, since the internal
role model is of little interest for the choreography genera-
tion presented in this paper we refer to [10] for more details
about the organisational modelling in m3po.

Choreography extensions The modelling of choreogra-
phies requires a role model different to the internal roles
defined in the workflow model. The collaborationRole de-
fines the observable behaviour that a party exhibits when
collaborating with other parties in the external process. The
“Customer” role in our example is associated with request-
ing a quote from a “Supplier” role. To give one partner
the possibility to define restrictions on the functionality that
must be provided by other partners in a choreography, the
ontology includes partnerLinks. Each partnerLink is char-
acterised by an associated collaborationRole that has to be
played by the collaboration partner.

4.5 Operational Aspect
The operational aspect deals with the modelling of exter-

nal applications, managed or invoked by the WfMS. These
applications can be different in nature, but their technical
details are not required and always abstracted in the work-
flow model. Although XPDL offers modelling concepts
for different application types such as EJBs, Java Objects,
XSLT scripts, Forms and Business Rules, the most impor-
tant application type in the context of this paper are Web
services. The semantics of all former application types in
m3po are kept similar to XPDL, but the modelling of Web
Service is enriched as follows (cf. Fig. 77). First, the asso-
ciated input and output messages are referenced as Message
types. Second, PartnerLinks and PartnerLinkTypes are ex-
plicitly linked, similarly to the modelling of Web Services
in BPEL. In m3po the PartnerLink modelled in the Pack-
ageHeader references these PartnerLinkTypes and defines
which role is taken by the process itself and which role is
taken by a Partner. In this way, the PartnerLinkType in
m3po describes a contract between two partners in terms

6See http://www.ontologyportal.org/
7Please note that the activity and process concept are shown in the fig-

ure for illustrative purpose, although by definition they do not belong to
the operational aspect.

http://www.ontologyportal.org/


of their roles (which are also related to a Pool) and the cor-
responding WSDL PortTypes the partners have to provide.

ProcessType

Service

-hasServiceName:string

-hasPortName:string

-hasEndPoint:EndPoint[0..1]

Role

-hasPortType:string

-hasName:string

XSLT

Activity

PartnerRole

-hasRoleName:string

-hasEndPoint:EndPoint

-hasServiceName:string[0..1]

-hasPortName:string[0..1]

MyRole

-hasRoleName:string

Partner

PartnerLinkType

-hasId:Identifier

-hasName:string

PartnerLink

-hasName:string

-hasId:Identifier

WebServiceOperation

-hasOperationName:string

WebService 

Script

PojoImplementation

-hasTool:boolean[0..1]

-hasReference:Reference[0..1]

EJB

BusinessRule

-hasRuleName:string

-hasLocation:iri

ApplicationType

Application

-hasID:Identifier

-hasName:string[0..1]

-hasDescription:string[0..1]

-hasFormalParameter:FormalParameter[*]

-hasExternalReference:ExternalReference[0..1]

-hasExtendedAttribute:ExtendedAttribute[*]

hasType

hasPartnerLinkTypeId

0..1hasPartner

hasPartnerLinkId

hasRoleType
0..1

hasMyRole

0..1 hasPartnerRole

0..1 hasImplementation

0..1

*
isVisibleFor

0..11..2
hasRole

0..1
hasService

0..1 *

hasApplication0..1

* hasPartnerLink

Figure 7: Concepts in the operational aspect

5 Compaction Rules

In this section we present compaction rules that extract
a sub-process (choreography interface) from an annotated
workflow including all activities that receive or send mes-
sages to a particular partner (and are annotated as such), but
hiding all irrelevant information for this specific partner co-
operation. The problem of extracting views on workflows is
well-established and a number of solutions have been pro-
posed in literature [4, 18, 5]. We adopt the solution pro-
posed in [4] and adapt it to the ontological model of m3po.
We define two compaction rules to identify and remove pri-
vate control dependencies within a Sequence, OR, XOR,
and AND block. The compaction rules introduced in this
section are recursively applied to a workflow model until
no nodes can be hidden anymore.

Definition 5.1 (Workflow Graph). A directed workflow
graph is a tuple G(O,F), where O is a finite set of object
nodes (e.g. activities) according to the XPDL metamodel
and F ⊆ O × O is a control flow relation, i.e. a set of
sequence flows connecting objects.

The workflow graph represents the translated XPDL
model in m3po. We now define the annotated workflow
graph, corresponding to an m3po model where activities
(objects) are annotated with visibility properties as defined
in the choreography extensions in section 4.2.

Definition 5.2 (Annotated Workflow Graph). An annotated
workflow graph G′(O′,F , visibility) is a workflow graph
G, where for every o′ ∈ O′, o′ ≡ o ∈ O a function
visibility : O → {private, public} assigns the visibility
of an object o in the graph to private or public.

Definition 5.3 (Sequence rule). Given the annotated work-
flow graph G′(O′,F) where oi, oj , ok ∈ O′ and oj has
visibility private and oi, ok has visibility public and
fij(oi, oj),fjk(oj , ok) ∈ F then a collaborative graph
Gc(Oc,Fc) compacted by oj is defined as a set of places
Oc = O′ − {oj} and Fc = F − {fij(oi, oj)fjk(oj , ok)} ∪
{fik(oi, ok)}.

This rule shows that if we dispose of a private activity
oj followed by any other activity ok, then we eliminate oj

and all the flows connecting to oj and we create a new flow
linking the fik(oi, ok). This rule also applies to inclusive
and exclusive branching (OR and XOR-splits) where one
branch is replaced by an arc to the respective join activity.

Definition 5.4 (AND rule). Given the annotated work-
flow graph G′(O′,F) where oi, oj , ok, ol ∈ O′ and oj has
visibility private and oi, ok has visibility public and
fij(oi, oj),fik(oi, ok),fkl(ok, ol),fjl(oj , ol)∈F then a col-
laborative graph Gc(Oc,Fc) compacted by oj is defined as
a set of places Oc = O′ − {oj} and the set of transitions
Fc = F − {fij(oi, oj)fjl(oj , ol)}.

If a private activity oj is in a parallel branch to other
activities and immediately preceded by an AND-split and
directly succeeded by an AND-join, indicating that all its
paths should be executed in parallel, it is removed and all
incoming and outgoing arcs are removed. If there is only
one other branch it becomes a simple sequence, otherwise a
parallel branch reduced by one branch.

If we apply these rules to the annotated workflow graph
of our motivating example (cf. the output of our translation
tool on the right side of Fig. 3) we obtain a model in m3po
that describes a control flow as depicted in Fig. 8.

S
up

pl
ie

r

Process RFQ

RFQ

Prepare 
Quote 

Rejection

Reject

Prepare 
Quote 

Acception

Quote

Prepare RFQ
Signal

Signal

procRFQRFQStart

RFQRec quoteDec

RFQSig

quoteRej

quoteAcc

quoteCompl

RFQcompl

RFQend

Figure 8: Compacted supplier’s choreography interface

6 Mapping m3po to an executable choreogra-
phy interface model

The compacted choreography interface model in m3po
as presented in the previous section is not meant for execu-
tion per se, but it can be translated to an executable chore-
ography model. The resulting definition can then be used
to control the message exchange in a collaboration, in our



case between the “Supplier” and the “Customer”. In this
paper we propose as a target model the state-based WSMO
choreography model which describes the behaviour of a ser-
vice from one role instance defining send and receive events
(i.e. choreography interface) in Web service communica-
tions. The benefit, beyond the expressivity of the WSMO
choreography model (and thus the relative ease of the map-
ping), is the possibility of combining provided and provider
interface [7] within one model. In our case we model the
choreography interface of the “Supplier”. As such, the gen-
erated model can be used to control the message exchange
of the “Supplier” in a semantic service-oriented architec-
ture. However, if needed, the “Customer” interface can be
generated similarly to the provider behaviour.

6.1 WSMO choreography
WSMO choreography models [19] are based on Abstract

State Machines (ASMs) [3]. A signature, defined by a
schema of the information interchanged, defines predicates
and functions to be used in the description. Ground facts
which are instances of concepts and relations defined by
imported ontologies specify the underlying database states.
A set of transition rules in a guarded transition denote the
state changes with regard to the evolution of the informa-
tion space throughout the consumption of the functionality
of the Web service. State changes are described by the cre-
ation of new instances or changes to attribute values of ob-
jects. Transition rules have one of the following forms:

• if ϕ then R; end if

• forall x with ϕ then R; end forall

• choose x with ϕ then R; end choose

The condition ϕ is a Boolean term and the update R is
a set of transition rules. The update part which can be a
primitive state change, like add, delete, or update, defines
all changes on the information space from an initial state S
to S′ where the condition ϕ is satisfied. More complex tran-
sition rules can be defined with the help of if-then, forall and
choose rules. In a given state, all updates of transition rules
whose condition is true, fire simultaneously (order does not
matter). If the updates are consistent it yields to the next
state.

6.2 Mapping m3po models to WSMO
choreographies

We assume a process model expressed in m3po to be a
directed control-flow graph. This assumption is valid for all
translations of BPMN-based XPDL models and for the ma-
jority of proprietary workflow models exported to XPDL.
We further assume a graph modelled with one initial and
one final activity (although theoretically one could model a

valid graph in m3po with multiple end activities). Transi-
tions between activities denote successor relations and dif-
ferent gateway types such as the AND, XOR or OR splits
and joins denote whether interactions must be executed con-
currently (AND-split), or whether exactly one branch is
chosen (XOR-split) or whether at least one branch is chosen
(OR-split).

We will illustrate the mappings based on the extracted
choreography model from the internal process as described
in section 5. Fig. 8 shows the choreography of our Sup-
plier with a Customer. It is the abstracted view of the entire
workflow as depicted in our motivating example with the
“Check Product Availability” hidden because of its anno-
tation as a private activity and the “Manage Account” hid-
den because of its visibility to the Transaction Bank role
only. As shown in Fig. 8 all successors of the initial “Pro-
cess RFQ” must be executed, since they follow an AND-
split gateway. The branches that correspond to these suc-
cessors eventually join in an AND-node before the process
ends. However, one of the two parallel branches diverges
in an XOR-split that means only one of the two activities
“Prepare Quote Rejection” or “Prepare Quote Acception”
will be enabled. In order to illustrate the mapping rules we
have marked the gateway nodes (such as the quoteDecision
XOR-gateway) in Fig. 8 with comprehensible names. In
the originating m3po model they are identified by a URI.
In order to translate the compacted choreography interface
model in m3po to the executable choreography specification
we define the state signature of the model as follows:

• The set of activities in the process model, including
the gateway activities representing the XOR, OR and
AND split and join, respectively.

• The set of ActivityOccurrences of a process instance
with the status attribute denoting valid states. For the
mapping we restrict the state space to three status, ac-
tive, inactive and completed. ActivityOccurrence are
created for all activities during the compaction pro-
cess. The inactive state is considered to be the stan-
dard state and is considered to be true for all Activ-
ityOccurrences. We introduce a boolean proposition
active returning true for all activated ActivityOccur-
rences. This proposition is used to determine which
branch has been chosen (activated) in an OR-split. The
decision can be based on the evaluation of a logical ex-
pression in the ontology itself or added by the environ-
ment.

• The set of transitions connecting the activities. For
simplicity we introduce a binary relation transition
taking the values of the hasTo and hasFrom attribute in
the Transition class.



Based on this state signature the actual state in the WSMO
choreography specification is determined by the truth value
of the following propositions:

• The set of valid ActivityOccurrence instances. All ac-
tivities compacted from a workflow model are by def-
inition valid instances in the choreography interface.

• The set of completed ActivityOccurrence. If the propo-
sition completed evaluates to true it means the par-
ticular ActivityOccurrence instance has been executed,
otherwise it is in an active state. In case of XOR or
OR splits we use this proposition to determine which
branch has been chosen by the environment.

• The set of instances of the predicate transition. An
instance transition(actOcc1, actOcc2) evaluates to
true if there is an arc from actOcc1 to actOcc2 and
in case there is a condition connected to the arc it eval-
uates to true.

In the following we define a translation T of an m3po on-
tology graph G to a set of WSMO Choreography transition
rules. The modifier add(b) is used to change the truth value
of the proposition b to true as described in the previous sec-
tion. Such a transition rule where b becomes true ensures
that the status of an ActivityOccurrence is set to completed.

T(G) = if a ∧ ¬b ∧ transition(a, b) ∧ active(b) then add(b)

This transition rule ensures the completion of an ActivityOc-
currence b if there is an arc from a to b and a is an OR-split
gateway activity.

T(G) = if a1 ∧ ... ∧ an ∧ ¬b ∧ transition(a1, b) ∧ ...

∧ transition(an, b) then add(b)

This transition adds a completion status to an ActivityOc-
currence b if there is an arc from each a1 ... an to b and b is
an AND-join gateway activity.

T(G) = if a ∧ ¬b ∧ transition(a, b) then add(b)

Further, an ActivityOccurrence status is updated to com-
pleted if there is an arc from a to b, but a is not an OR-split
gateway and b is not an AND-join gateway activity.
If we apply these three rules to our compacted model we
obtain the following transition rules in a WSMO choreog-
raphy model. The arcs originating in an OR-gateway result
in the following rules:

if quoteDec ∧ ¬quoteAcc

∧ transition(quoteDec, quoteAcc)

∧ active(quoteAcc) then add(quoteAcc)

ifquoteDec ∧ ¬quoteRej

∧ transition(quoteDec, quoteRej)

∧ active(quoteRej) then add(quoteRej)

For the arcs ending in the AND-join gateway in our example
the following rule is obtained:

if RFQSig ∧ quoteCompl ∧ ¬RFQCompl

∧ transition(quoteCompl, RFQCompl)

∧ transition(RFQSig, RFQCompl)

then add(RFQCompl)

Applying mapping rule 6.2 to the remaining arcs yield to
the following transition rules in the choreography model:

if RFQStart ∧ ¬procRFQ ∧ transition(RFQStart, procRFQ)

then add(procRFQ)

if procRFQ ∧ ¬RFQRec ∧ transition(procRFQ, RFQRec)

then add(RFQRec)

if RFQRec ∧ ¬RFQSig ∧ transition(RFQRec, RFQSig)

then add(RFQSig)

if RFQRec ∧ ¬QuoteDec ∧ transition(RFQRec, quoteDec)

then add(quoteDec)

if quoteAcc ∧ ¬quoteCompl ∧ transition(quoteAcc, quoteCompl)

then add(quoteCompl)

if quoteRej ∧ ¬quoteCompl ∧ transition(quoteRej, quoteCompl)

then add(quoteCompl)

if RFQCompl ∧ ¬RFQEnd ∧ transition(RFQCompl, RFQEnd)

then add(RFQEnd)

6.3 Executing mapped choreographies

As explained before, the generated WSMO choreogra-
phy document can be used to control the execution of the
Web service message exchange patterns within a semantic
service-oriented architecture such as WSMX [9]. Such ar-
chitectures exist and the generated choreography can be de-
ployed in them. A detailed description of the deployment of
the model and the execution semantics is beyond the scope
of this paper. The interested reader is referred to [11].

Note that our approach and model is not restricted to
WSMO choreographies. We can target arbitrary choreogra-
phy languages by adding appropriate declarative mappings.
We have selected WSMO choreographies as demonstration
target because of the expressive formalism and the existence
of execution platforms.

7 Conclusion
State-of-the-art workflow management systems do not

support the (semi-)automatic construction of choreography
interfaces from existing workflows. These choreography
interfaces are needed in cross-organisational collaborations
which are becoming ever more automated through service-
oriented computing. Being not able to create them auto-
matically from the internal workflows causes not only addi-
tional labour, but also synchronisation issues that compro-
mise the consistency between the workflow and the chore-
ography model in its execution. We presented an approach



to automatically generate partner-specific choreography in-
terfaces from internal workflows. We use an integrated
ontology m3po for representing business workflows and
choreographies, based on the XPDL metamodel. We pre-
sented declarative mapping rules from XPDL to our ontol-
ogy which we implemented in a conversion tool. Based on
light-weight manual choreography annotations on the au-
tomatically populated ontology that capture parameterised
view properties, we presented compaction rules that gener-
ate per-partner views on the workflow model. We showed
how to generate executable choreography specifications
from these generated partner views, again using declarative
mappings. In particular, we presented a mapping to WSMO
choreographies as demonstration target because of the ex-
pressivity of the formalism and the existence of execution
platforms. The resulting models can be used directly for
the execution of a collaborative process or exchanged by
business partners to negotiate a global choreography and to
adopt their Web service interfaces accordingly.

Acknowledgements This material is based upon works
jointly supported by the Science Foundation Ireland under
Grant No. SFI/08/CE/I1380 and the European Union under
the SUPER project (FP6-026850).

References
[1] A. Alves et al. Web Services Business Process Execution

Language Version 2.0. OASIS Standard, OASIS, Apr. 2007.
[2] R. Bobrik, M. Reichert, and T. Bauer. View-Based Pro-

cess Visualization. In Proceedings of the 5th International
Conference on Business Process Management, pages 88–95,
Brisbane, Australia, 2007.

[3] E. Börger and R. Stärk. Abstract State Machines: A Method
for High-level System Design and Analysis. Springer-Verlag,
2003.

[4] I. Chebbi, S. Dustdar, and S. Tata. The view-based approach
to dynamic inter-organizational workflow cooperation. Data
& Knowledge Engineering, 56(2):139–173, 2006.

[5] D. K. W. Chiu, S. C. Cheung, S. Till, K. Karlapalem, Q. Li,
and E. Kafeza. Workflow View Driven Cross-Organizational
Interoperability in a Web Service Environment. Information
Technology and Management, 5(3-4):221–250, 2004.

[6] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The
web service modeling language: An overview. In Proceed-
ings of the 3rd European Semantic Web Conference, Budva,
Montenegro, June 2006.

[7] R. M. Dijkman and M. Dumas. Service-oriented Design: A
Multi-viewpoint Approach. International Journal of Coop-
erative Information Systems, 13(4):337–368, Dec. 2004.

[8] R. Eshuis and P. Grefen. Constructing customized process
views. Data & Knowledge Engineering, 64(2):419–438,
2008.

[9] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler.
WSMX – A Semantic Service-Oriented Architecture. In
Proceedings of the 3rd IEEE International Conference on
Web Services, pages 321 – 328. Orlando, FL, USA, 2005.

[10] A. Haller, E. Oren, and P. Kotinurmi. m3po: An Ontology to
Relate Choreographies to Workflow Models. In Proceedings
of the 3rd International Conference on Services Computing,
pages 19–27, Chicago, IL, USA, 2006.

[11] A. Haller, J. Scicluna, and T. Haselwanter. WSMX Chore-
ography. WSMX Working Draft, DERI, 6 2005.

[12] S. Jablonski and C. Bussler. Workflow Management: Mod-
eling Concepts, Architecture and Implementation. Interna-
tional Thomson Computer Press, 1996.

[13] N. Kavantzas et al. Web Services Choreography Description
Language. Technical report, Nov. 2005.

[14] A. Martens. Consistency between Executable and Abstract
Processes. In Proceedings of the International Conference
on e-Technology, e-Commerce and e-Service, Hong Kong,
China, Mar. 2005.

[15] M. P. Papazoglou and D. Georgakopoulos. Service-Oriented
Computing. Communications of the ACM, 46(10):25–28,
2003.

[16] K. H. Park and J. Favrel. Virtual enterprise – Information
system and networking solution. Computers & Industrial
Engineering, 37(1-2):441–444, 1999.

[17] D. Roman, M. Kifer, and D. Fensel. WSMO Choreogra-
phy: From Abstract State Machines to Concurrent Transac-
tion Logic. In Proceedings of the 5th European Semantic
Web Conference, pages 659–673, Tenerife, Spain, 2008.

[18] K. A. Schulz and M. E. Orlowska. Facilitating cross-
organisational workflows with a workflow view approach.
Data & Knowledge Engineering, 51(1):109–147, 2004.

[19] J. Scicluna, A. Polleres, and D. Roman. Ontology-
based Choreography and Orchestration of WSMO Services.
WSMO Working Draft v0.2, DERI, 2005.

[20] The Workflow Management Coalition. Workflow Standard
Process Definition Interface – XML Process Definition Lan-
guage. Technical Report WFMC-TC-1025, WfMC, Oct.
2005.

[21] H. Tran, U. Zdun, and S. Dustdar. View-Based Reverse En-
gineering Approach for Enhancing Model Interoperability
and Reusability in Process-Driven SOAs. In Proceedings of
the 10th International Conference on Software Reuse, pages
233–244, Beijing, China, 2008.

[22] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow Patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.


	Introduction
	Motivating Example

	Related Work
	Translating XPDL to m3po
	Modelling BPMN and XPDL in m3po
	Functional Aspect
	Control Aspect
	Informational Aspect
	Organisational Aspect
	Operational Aspect

	Compaction Rules
	Mapping m3po to an executable choreography interface model
	WSMO choreography
	Mapping m3po models to WSMO choreographies
	Executing mapped choreographies

	Conclusion

